呼气信号三分类癌症检测模型的设计及评价
作者:
作者单位:

上海健康医学院

作者简介:

通讯作者:

中图分类号:

基金项目:

高水平地方高校建设创新人才培养(A1-2601-23-309001);上海市分子影像学重点实验室建设项目(18DZ2260400);国家重点研发计 划(2020YFA0909000)。


Design and Evaluation of a Triple Classification Cancer Detection Model for Breath Signals
Author:
Affiliation:

Shanghai University of Medicine &Health Sciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 电子鼻呼气检测技术是一种极具潜力的无创癌症检测技术。然而,现有的检测模型研究大多围绕将某一类疾病患者与健康人的区分展开。为了通过电子鼻呼气检测实现对多种癌症的鉴别,该文基于 KNN 构建 了一种三分类癌症检测模型。方法 首先通过电子鼻采集 210 名志愿者的呼气号样本,其中160名肺癌或肝癌患者均为医院的确诊患者,50 名健康对照者则为医院的职工或学生。对呼气样本进行预处理得到大小为210×180的原始特征数据集。然后通过卡方检验完成数据特征初筛,并利用 LDA 优化方法得到训练特征集。接着利用 K 值选择学习曲线,训练并得到最优 KNN 三分类癌症检测模型。最后对模型进行多维度评价。结果 优化后的 KNN 三分类癌症检测模型可有效区分健康人、肺癌患者和肝癌患者,性能优于其他模型,平均准确度可达到92.5%。可见,机器学习算法可助力电子鼻呼气检测在癌症检测中的推广应用。

    Abstract:

    Objective Electronic nasal breath testing is a highly promising noninvasive cancer detection technique. However, most of the existing studies on detection modeling has are centered on the differentiation of a certain type of disease from healthy individuals. In order to realize the differentiation of multiple cancers through breath testing with an electronic nose, this paper constructs a three-classification cancer detection model based on KNN. Methods Firstly, breath signal samples were first collected from 210 volunteers through an electronic nose, of which 160 patients with lung or liver cancer were diagnosed patients in the hospital and 50 healthy controls were hospital staff or students. The breath samples were preprocessed to obtain a dataset of size 210 × 180. Then, the initial screening of data features is completed by chi-square test and the training feature set is obtained by using LDA optimization method. Then, the optimal KNN triple classification cancer detection model is trained and obtained by using the K- value to select the learning curves. Finally, the model is evaluated in multiple dimensions. Results The optimally designed KNN triple classification cancer detection model can effectively differentiate between healthy people, lung cancer patients and liver cancer patients, with better performance than other models, and the accuracy can reach about 92.5%. It can be seen that machine learning algorithms can help promote the application of electronic nasal breath testing in cancer detection.

    参考文献
    相似文献
    引证文献
引用本文

岳静文,郝丽俊.呼气信号三分类癌症检测模型的设计及评价[J].生物医学工程学进展,2024,(1):48-53

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-14
  • 最后修改日期:2023-10-13
  • 录用日期:2023-10-15
  • 在线发布日期: 2024-04-08
  • 出版日期:
二维码