一种基于胶囊网络外膜蛋白拓扑结构预测方法
DOI:
作者:
作者单位:

东北师范大学信息科学与技术学院计算生物研究所,长春,130117

作者简介:

通讯作者:

中图分类号:

基金项目:


A Method for Predicting the Topology of Outer Membrane Proteins Based on Capsule Network
Author:
Affiliation:

Institute of Computational Biology, College of Information Science and Technology, Northeast Normal University, Changchun, 130117

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 采用计算手段探索在当前外膜蛋白小样本的条件下提升外膜蛋白拓扑结构预测精度的深度学习方法。方法 首先选取和构建适用于预测外膜蛋白拓扑结构的数据集;第二,经特征筛选和对比实验确定模型的最优输入;第三,构建和优化基于胶囊网络的拓扑结构预测模型TopOMP-capsnet;最后通过对比同类方法评估和验证模型性能。结果和结论 拓扑结构预测模型TopOMP-capsnet与同类方法对比性能有所提升,证明深度学习技术能够在有限样本条件下识别相应序列模式,有助于外膜蛋白结构和功能的大规模分类及筛选。创新之处 拓扑结构预测模型TopOMP-capsnet的三态预测准确率(Q3)达到87.7%,优于传统机器学习方法。

    Abstract:

    Objective Employing computational means to explore an efficient deep learning method for improving the prediction accuracy of outer membrane protein topology under the current conditions of small sample size of outer membrane proteins. Method First, selecting and constructing data sets suitable for the prediction of outer membrane protein topology; Second, determining the optimal input of the model through feature screening and comparative experiments; Third, building and optimizing a topology prediction model the TopOMP-capsnet based on capsule network; Finally, evaluation and validation of model performance by comparative congenic methods. Results and conclusions Topology prediction model the TopOMP-capsnet has better performance compared with similar methods, which proves that deep learning technology can identify corresponding sequence patterns under limited sample conditions, and is helpful for large scale classification and screening of outer membrane protein structure and function. Innovation Topology prediction model the TopOMP-capsnet has a three-state prediction accuracy (Q3) of 87.7%, which is superior to traditional machine learning methods.

    参考文献
    相似文献
    引证文献
引用本文

宋世龙,赵雨桐,王茜,王晗.一种基于胶囊网络外膜蛋白拓扑结构预测方法[J].生物医学工程学进展,2022,(4):207-218

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-22
  • 最后修改日期:2022-12-29
  • 录用日期:2022-12-15
  • 在线发布日期: 2023-02-10
  • 出版日期:
二维码